Copied to
clipboard

G = C23xQ16order 128 = 27

Direct product of C23 and Q16

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C23xQ16, C4.3C25, C8.19C24, Q8.1C24, C24.197D4, (C23xC8).16C2, C4.29(C22xD4), C2.38(D4xC23), (C2xC8).574C23, (C2xC4).609C24, C23.895(C2xD4), (C22xC4).629D4, (Q8xC23).15C2, (C2xQ8).473C23, (C22xC8).544C22, (C23xC4).713C22, C22.166(C22xD4), (C22xC4).1591C23, (C22xQ8).503C22, (C2xC4).882(C2xD4), SmallGroup(128,2308)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C23xQ16
C1C2C4C2xC4C22xC4C23xC4Q8xC23 — C23xQ16
C1C2C4 — C23xQ16
C1C24C23xC4 — C23xQ16
C1C2C2C4 — C23xQ16

Generators and relations for C23xQ16
 G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 988 in 732 conjugacy classes, 476 normal (7 characteristic)
C1, C2, C2, C4, C4, C4, C22, C8, C2xC4, C2xC4, Q8, Q8, C23, C2xC8, Q16, C22xC4, C22xC4, C2xQ8, C2xQ8, C24, C22xC8, C2xQ16, C23xC4, C23xC4, C22xQ8, C22xQ8, C23xC8, C22xQ16, Q8xC23, C23xQ16
Quotients: C1, C2, C22, D4, C23, Q16, C2xD4, C24, C2xQ16, C22xD4, C25, C22xQ16, D4xC23, C23xQ16

Smallest permutation representation of C23xQ16
Regular action on 128 points
Generators in S128
(1 98)(2 99)(3 100)(4 101)(5 102)(6 103)(7 104)(8 97)(9 56)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 60)(18 61)(19 62)(20 63)(21 64)(22 57)(23 58)(24 59)(25 33)(26 34)(27 35)(28 36)(29 37)(30 38)(31 39)(32 40)(41 128)(42 121)(43 122)(44 123)(45 124)(46 125)(47 126)(48 127)(65 115)(66 116)(67 117)(68 118)(69 119)(70 120)(71 113)(72 114)(73 111)(74 112)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 90)(82 91)(83 92)(84 93)(85 94)(86 95)(87 96)(88 89)
(1 48)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 89)(10 90)(11 91)(12 92)(13 93)(14 94)(15 95)(16 96)(17 105)(18 106)(19 107)(20 108)(21 109)(22 110)(23 111)(24 112)(25 113)(26 114)(27 115)(28 116)(29 117)(30 118)(31 119)(32 120)(33 71)(34 72)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(49 81)(50 82)(51 83)(52 84)(53 85)(54 86)(55 87)(56 88)(57 80)(58 73)(59 74)(60 75)(61 76)(62 77)(63 78)(64 79)(97 126)(98 127)(99 128)(100 121)(101 122)(102 123)(103 124)(104 125)
(1 115)(2 116)(3 117)(4 118)(5 119)(6 120)(7 113)(8 114)(9 79)(10 80)(11 73)(12 74)(13 75)(14 76)(15 77)(16 78)(17 84)(18 85)(19 86)(20 87)(21 88)(22 81)(23 82)(24 83)(25 46)(26 47)(27 48)(28 41)(29 42)(30 43)(31 44)(32 45)(33 125)(34 126)(35 127)(36 128)(37 121)(38 122)(39 123)(40 124)(49 110)(50 111)(51 112)(52 105)(53 106)(54 107)(55 108)(56 109)(57 90)(58 91)(59 92)(60 93)(61 94)(62 95)(63 96)(64 89)(65 98)(66 99)(67 100)(68 101)(69 102)(70 103)(71 104)(72 97)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 50 5 54)(2 49 6 53)(3 56 7 52)(4 55 8 51)(9 104 13 100)(10 103 14 99)(11 102 15 98)(12 101 16 97)(17 29 21 25)(18 28 22 32)(19 27 23 31)(20 26 24 30)(33 60 37 64)(34 59 38 63)(35 58 39 62)(36 57 40 61)(41 81 45 85)(42 88 46 84)(43 87 47 83)(44 86 48 82)(65 73 69 77)(66 80 70 76)(67 79 71 75)(68 78 72 74)(89 125 93 121)(90 124 94 128)(91 123 95 127)(92 122 96 126)(105 117 109 113)(106 116 110 120)(107 115 111 119)(108 114 112 118)

G:=sub<Sym(128)| (1,98)(2,99)(3,100)(4,101)(5,102)(6,103)(7,104)(8,97)(9,56)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(25,33)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40)(41,128)(42,121)(43,122)(44,123)(45,124)(46,125)(47,126)(48,127)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,113)(72,114)(73,111)(74,112)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,90)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,89), (1,48)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,71)(34,72)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,80)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(97,126)(98,127)(99,128)(100,121)(101,122)(102,123)(103,124)(104,125), (1,115)(2,116)(3,117)(4,118)(5,119)(6,120)(7,113)(8,114)(9,79)(10,80)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,84)(18,85)(19,86)(20,87)(21,88)(22,81)(23,82)(24,83)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45)(33,125)(34,126)(35,127)(36,128)(37,121)(38,122)(39,123)(40,124)(49,110)(50,111)(51,112)(52,105)(53,106)(54,107)(55,108)(56,109)(57,90)(58,91)(59,92)(60,93)(61,94)(62,95)(63,96)(64,89)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,97), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,50,5,54)(2,49,6,53)(3,56,7,52)(4,55,8,51)(9,104,13,100)(10,103,14,99)(11,102,15,98)(12,101,16,97)(17,29,21,25)(18,28,22,32)(19,27,23,31)(20,26,24,30)(33,60,37,64)(34,59,38,63)(35,58,39,62)(36,57,40,61)(41,81,45,85)(42,88,46,84)(43,87,47,83)(44,86,48,82)(65,73,69,77)(66,80,70,76)(67,79,71,75)(68,78,72,74)(89,125,93,121)(90,124,94,128)(91,123,95,127)(92,122,96,126)(105,117,109,113)(106,116,110,120)(107,115,111,119)(108,114,112,118)>;

G:=Group( (1,98)(2,99)(3,100)(4,101)(5,102)(6,103)(7,104)(8,97)(9,56)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(25,33)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40)(41,128)(42,121)(43,122)(44,123)(45,124)(46,125)(47,126)(48,127)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,113)(72,114)(73,111)(74,112)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,90)(82,91)(83,92)(84,93)(85,94)(86,95)(87,96)(88,89), (1,48)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,71)(34,72)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(49,81)(50,82)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,80)(58,73)(59,74)(60,75)(61,76)(62,77)(63,78)(64,79)(97,126)(98,127)(99,128)(100,121)(101,122)(102,123)(103,124)(104,125), (1,115)(2,116)(3,117)(4,118)(5,119)(6,120)(7,113)(8,114)(9,79)(10,80)(11,73)(12,74)(13,75)(14,76)(15,77)(16,78)(17,84)(18,85)(19,86)(20,87)(21,88)(22,81)(23,82)(24,83)(25,46)(26,47)(27,48)(28,41)(29,42)(30,43)(31,44)(32,45)(33,125)(34,126)(35,127)(36,128)(37,121)(38,122)(39,123)(40,124)(49,110)(50,111)(51,112)(52,105)(53,106)(54,107)(55,108)(56,109)(57,90)(58,91)(59,92)(60,93)(61,94)(62,95)(63,96)(64,89)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,97), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,50,5,54)(2,49,6,53)(3,56,7,52)(4,55,8,51)(9,104,13,100)(10,103,14,99)(11,102,15,98)(12,101,16,97)(17,29,21,25)(18,28,22,32)(19,27,23,31)(20,26,24,30)(33,60,37,64)(34,59,38,63)(35,58,39,62)(36,57,40,61)(41,81,45,85)(42,88,46,84)(43,87,47,83)(44,86,48,82)(65,73,69,77)(66,80,70,76)(67,79,71,75)(68,78,72,74)(89,125,93,121)(90,124,94,128)(91,123,95,127)(92,122,96,126)(105,117,109,113)(106,116,110,120)(107,115,111,119)(108,114,112,118) );

G=PermutationGroup([[(1,98),(2,99),(3,100),(4,101),(5,102),(6,103),(7,104),(8,97),(9,56),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,60),(18,61),(19,62),(20,63),(21,64),(22,57),(23,58),(24,59),(25,33),(26,34),(27,35),(28,36),(29,37),(30,38),(31,39),(32,40),(41,128),(42,121),(43,122),(44,123),(45,124),(46,125),(47,126),(48,127),(65,115),(66,116),(67,117),(68,118),(69,119),(70,120),(71,113),(72,114),(73,111),(74,112),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,90),(82,91),(83,92),(84,93),(85,94),(86,95),(87,96),(88,89)], [(1,48),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,89),(10,90),(11,91),(12,92),(13,93),(14,94),(15,95),(16,96),(17,105),(18,106),(19,107),(20,108),(21,109),(22,110),(23,111),(24,112),(25,113),(26,114),(27,115),(28,116),(29,117),(30,118),(31,119),(32,120),(33,71),(34,72),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(49,81),(50,82),(51,83),(52,84),(53,85),(54,86),(55,87),(56,88),(57,80),(58,73),(59,74),(60,75),(61,76),(62,77),(63,78),(64,79),(97,126),(98,127),(99,128),(100,121),(101,122),(102,123),(103,124),(104,125)], [(1,115),(2,116),(3,117),(4,118),(5,119),(6,120),(7,113),(8,114),(9,79),(10,80),(11,73),(12,74),(13,75),(14,76),(15,77),(16,78),(17,84),(18,85),(19,86),(20,87),(21,88),(22,81),(23,82),(24,83),(25,46),(26,47),(27,48),(28,41),(29,42),(30,43),(31,44),(32,45),(33,125),(34,126),(35,127),(36,128),(37,121),(38,122),(39,123),(40,124),(49,110),(50,111),(51,112),(52,105),(53,106),(54,107),(55,108),(56,109),(57,90),(58,91),(59,92),(60,93),(61,94),(62,95),(63,96),(64,89),(65,98),(66,99),(67,100),(68,101),(69,102),(70,103),(71,104),(72,97)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,50,5,54),(2,49,6,53),(3,56,7,52),(4,55,8,51),(9,104,13,100),(10,103,14,99),(11,102,15,98),(12,101,16,97),(17,29,21,25),(18,28,22,32),(19,27,23,31),(20,26,24,30),(33,60,37,64),(34,59,38,63),(35,58,39,62),(36,57,40,61),(41,81,45,85),(42,88,46,84),(43,87,47,83),(44,86,48,82),(65,73,69,77),(66,80,70,76),(67,79,71,75),(68,78,72,74),(89,125,93,121),(90,124,94,128),(91,123,95,127),(92,122,96,126),(105,117,109,113),(106,116,110,120),(107,115,111,119),(108,114,112,118)]])

56 conjugacy classes

class 1 2A···2O4A···4H4I···4X8A···8P
order12···24···44···48···8
size11···12···24···42···2

56 irreducible representations

dim1111222
type++++++-
imageC1C2C2C2D4D4Q16
kernelC23xQ16C23xC8C22xQ16Q8xC23C22xC4C24C23
# reps112827116

Matrix representation of C23xQ16 in GL7(F17)

16000000
0100000
0010000
00016000
00001600
0000010
0000001
,
16000000
01600000
00160000
00016000
00001600
0000010
0000001
,
1000000
01600000
00160000
00016000
00001600
00000160
00000016
,
1000000
07130000
04100000
00010400
00013700
00000314
0000033
,
1000000
0010000
0100000
00001600
00016000
000001016
00000167

G:=sub<GL(7,GF(17))| [16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,0,7,4,0,0,0,0,0,13,10,0,0,0,0,0,0,0,10,13,0,0,0,0,0,4,7,0,0,0,0,0,0,0,3,3,0,0,0,0,0,14,3],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,0,0,10,16,0,0,0,0,0,16,7] >;

C23xQ16 in GAP, Magma, Sage, TeX

C_2^3\times Q_{16}
% in TeX

G:=Group("C2^3xQ16");
// GroupNames label

G:=SmallGroup(128,2308);
// by ID

G=gap.SmallGroup(128,2308);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,-2,448,477,456,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<